Simultaneous identification of 6 pathogens causing porcine reproductive failure by using multiplex ligation-dependent probe amplification - PubMed

首页    发表论文    2020年    Simultaneous identification of 6 pathogens causing porcine reproductive failure by using multiplex ligation-dependent probe amplification - PubMed

. 2020 Nov;67(6):2467-2474.

doi: 10.1111/tbed.13585. Epub 2020 May 5.

Affiliations

Simultaneous identification of 6 pathogens causing porcine reproductive failure by using multiplex ligation-dependent probe amplification

Yingshan Zhou et al. Transbound Emerg Dis. 2020 Nov.

Abstract

We developed a multiplex ligation-dependent probe amplification (MLPA) assay for the simultaneous detection of 6 clinically relevant viral pathogens causing porcine reproductive failure, that is porcine reproductive and respiratory syndrome virus (PRRSV), Japanese encephalitis virus (JEV), classical swine fever virus (CSFV), porcine circovirus type 2 (PCV2), pseudorabies virus (PRV) and porcine parvovirus (PPV). The limits of detection for the assay varied among the 6 target organisms from 1 to 8 copies per MLPA assay. The MLPA assay was evaluated with 346 heparinized porcine umbilical cord blood specimens, and the results of the assay were compared to those of real-time PCR. The MLPA assay showed specificities and sensitivities of 99.2% and 100%, respectively, for PRRSV; 100% and 100%, respectively, for CSFV, PCV2, PRV and PPV. No sample was found to be positive for JEV by either the MLPA assay or the real-time PCR. In conclusion, the MLPA assay has comparable clinical sensitivity to that of real-time PCR assay and provides a useful tool for fast screening porcine reproductive failure-associated viruses.

Keywords: Multiplex Ligation-dependent Probe Amplification (MLPA); porcine reproductive failure; viral disease.

Similar articles

References

REFERENCES

    1. De Smet, L., Ravoet, J., de Miranda, J. R., Wenseleers, T., Mueller, M. Y., Moritz, R. F., & de Graaf, D. C. (2012). BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses. PLoS ONE, 7(10), e47953. https://doi.org/10.1371/journal.pone.0047953
    1. Heffelfinger, J. D., Li, X. I., Batmunkh, N., Grabovac, V., Diorditsa, S., Liyanage, J. B., … Marfin, A. A. (2017). Japanese encephalitis surveillance and immunization-Asia and Western Pacific Regions, 2016. Morbidity and Mortality Weekly Report, 66(22), 579. https://doi.org/10.15585/mmwr.mm6622a3
    1. Hodinka, R. L., & Kaiser, L. (2013). Is the era of viral culture over in the clinical microbiology laboratory? Journal of Clinical Microbiology, 51(1), 2-8. https://doi.org/10.1128/JCM.02593-12
    1. Huang, J.-L., Lin, H.-T., Wang, Y.-M., Weng, M.-H., Ji, D.-D., Kuo, M.-D., … Lin, C.-S. (2004). Sensitive and specific detection of strains of Japanese encephalitis virus using a one-step TaqMan RT-PCR technique. Journal of Medical Virology, 74(4), 589-596. https://doi.org/10.1002/jmv.20218
    1. Johann, P. D., Hovestadt, V., Thomas, C., Jeibmann, A., Heß, K., Bens, S., … Hasselblatt, M. (2017). Cribriform neuroepithelial tumor: Molecular characterization of a Smarcb1-deficient non-rhabdoid tumor with favorable long-term outcome. Brain Pathology, 27(4), 411-418. https://doi.org/10.1111/bpa.12413

MeSH terms

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

LinkOut - more resources

2022年6月6日 21:28